healpy tutorial

See the Jupyter Notebook version of this tutorial at https://github.com/healpy/healpy/blob/master/doc/tutorial.ipynb

Choose the inline backend of maptlotlib to display the plots inside the Jupyter Notebook

[1]:
import matplotlib.pyplot as plt

%matplotlib inline
[2]:
import numpy as np
import healpy as hp

NSIDE and ordering

Maps are simply numpy arrays, where each array element refers to a location in the sky as defined by the Healpix pixelization schemes (see the healpix website).

Note: Running the code below in a regular Python session will not display the maps; it’s recommended to use an IPython shell or a Jupyter notebook.

The resolution of the map is defined by the NSIDE parameter, which is generally a power of 2.

[3]:
NSIDE = 32
print(
    "Approximate resolution at NSIDE {} is {:.2} deg".format(
        NSIDE, hp.nside2resol(NSIDE, arcmin=True) / 60
    )
)
Approximate resolution at NSIDE 32 is 1.8 deg

The function healpy.pixelfunc.nside2npix gives the number of pixels NPIX of the map:

[4]:
NPIX = hp.nside2npix(NSIDE)
print(NPIX)
12288

The same pixels in the map can be ordered in 2 ways, either RING, where they are numbered in the array in horizontal rings starting from the North pole:

[5]:
m = np.arange(NPIX)
hp.mollview(m, title="Mollview image RING")
hp.graticule()
_images/tutorial_9_0.png

The standard coordinates are the colatitude \(\theta\), \(0\) at the North Pole, \(\pi/2\) at the equator and \(\pi\) at the South Pole and the longitude \(\phi\) between \(0\) and \(2\pi\) eastward, in a Mollview projection, \(\phi=0\) is at the center and increases eastward toward the left of the map.

We can also use vectors to represent coordinates, for example vec is the normalized vector that points to \(\theta=\pi/2, \phi=3/4\pi\):

[6]:
vec = hp.ang2vec(np.pi / 2, np.pi * 3 / 4)
print(vec)
[-7.07106781e-01  7.07106781e-01  6.12323400e-17]

We can find the indices of all the pixels within \(10\) degrees of that point and then change the value of the map at those indices:

[7]:
ipix_disc = hp.query_disc(nside=32, vec=vec, radius=np.radians(10))
[8]:
m = np.arange(NPIX)
m[ipix_disc] = m.max()
hp.mollview(m, title="Mollview image RING")
_images/tutorial_14_0.png

We can retrieve colatitude and longitude of each pixel using pix2ang, in this case we notice that the first 4 pixels cover the North Pole with pixel centers just ~\(1.5\) degrees South of the Pole all at the same latitude. The fifth pixel is already part of another ring of pixels.

[9]:
theta, phi = np.degrees(hp.pix2ang(nside=32, ipix=[0, 1, 2, 3, 4]))
[10]:
theta
[10]:
array([1.46197116, 1.46197116, 1.46197116, 1.46197116, 2.92418036])
[11]:
phi
[11]:
array([ 45. , 135. , 225. , 315. ,  22.5])

The RING ordering is necessary for the Spherical Harmonics transforms, the other option is NESTED ordering which is very efficient for map domain operations because scaling up and down maps is achieved just multiplying and rounding pixel indices. See below how pixel are ordered in the NESTED scheme, notice the structure of the 12 HEALPix base pixels (NSIDE 1):

[12]:
m = np.arange(NPIX)
hp.mollview(m, nest=True, title="Mollview image NESTED")
_images/tutorial_20_0.png

All healpy routines assume RING ordering, in fact as soon as you read a map with read_map, even if it was stored as NESTED, it is transformed to RING. However, you can work in NESTED ordering passing the nest=True argument to most healpy routines.

Reading and writing maps to file

For the following section, it is required to download larger maps by executing from the terminal the bash script healpy_get_wmap_maps.sh which should be available in your path.

This will download the higher resolution WMAP data into the current directory.

[13]:
!wget -c http://lambda.gsfc.nasa.gov/data/map/dr4/skymaps/7yr/raw/wmap_band_iqumap_r9_7yr_W_v4.fits;wget -c http://lambda.gsfc.nasa.gov/data/map/dr4/ancillary/masks/wmap_temperature_analysis_mask_r9_7yr_v4.fits
--2024-02-17 01:23:23--  http://lambda.gsfc.nasa.gov/data/map/dr4/skymaps/7yr/raw/wmap_band_iqumap_r9_7yr_W_v4.fits
Resolving lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)...
129.164.179.68, 2001:4d0:2310:150::68
Connecting to lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)|129.164.179.68|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://lambda.gsfc.nasa.gov/data/map/dr4/skymaps/7yr/raw/wmap_band_iqumap_r9_7yr_W_v4.fits [following]
--2024-02-17 01:23:23--  https://lambda.gsfc.nasa.gov/data/map/dr4/skymaps/7yr/raw/wmap_band_iqumap_r9_7yr_W_v4.fits
Connecting to lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)|129.164.179.68|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 100676160 (96M)
Saving to: ‘wmap_band_iqumap_r9_7yr_W_v4.fits’


  wmap_band   0%[                    ]       0  --.-KB/s

 wmap_band_   1%[                    ]   1.56M  7.55MB/s

wmap_band_i   3%[                    ]   3.55M  8.56MB/s

wmap_band_iq   5%[>                   ]   5.55M  8.90MB/s
 

wmap_band_iqu   7%[>                   ]   7.54M  9.07MB/s
  

wmap_band_iqum   9%[>                   ]   9.34M  9.06MB/s
   
wmap_band_iquma 11%[=> ] 11.28M 9.09MB/s

</pre>

wmap_band_iquma 11%[=> ] 11.28M 9.09MB/s

end{sphinxVerbatim}

wmap_band_iquma 11%[=> ] 11.28M 9.09MB/s

more-to-come:

wmap_band_iqumap 13%[=&gt; ] 13.28M 9.16MB/s

</pre>

wmap_band_iqumap 13%[=> ] 13.28M 9.16MB/s

end{sphinxVerbatim}

wmap_band_iqumap 13%[=> ] 13.28M 9.16MB/s

more-to-come:

wmap_band_iqumap_ 15%[==&gt; ] 15.27M 9.21MB/s

</pre>

wmap_band_iqumap_ 15%[==> ] 15.27M 9.21MB/s

end{sphinxVerbatim}

wmap_band_iqumap_ 15%[==> ] 15.27M 9.21MB/s

more-to-come:

wmap_band_iqumap_r 17%[==&gt; ] 17.26M 9.25MB/s

</pre>

wmap_band_iqumap_r 17%[==> ] 17.26M 9.25MB/s

end{sphinxVerbatim}

wmap_band_iqumap_r 17%[==> ] 17.26M 9.25MB/s

wmap_band_iqumap_r9 20%[===&gt; ] 19.25M 9.29MB/s

</pre>

wmap_band_iqumap_r9 20%[===> ] 19.25M 9.29MB/s

end{sphinxVerbatim}

wmap_band_iqumap_r9 20%[===> ] 19.25M 9.29MB/s

map_band_iqumap_r9_ 22%[===&gt; ] 21.24M 9.31MB/s

</pre>

map_band_iqumap_r9_ 22%[===> ] 21.24M 9.31MB/s

end{sphinxVerbatim}

map_band_iqumap_r9_ 22%[===> ] 21.24M 9.31MB/s

ap_band_iqumap_r9_7 24%[===&gt; ] 23.21M 9.32MB/s

</pre>

ap_band_iqumap_r9_7 24%[===> ] 23.21M 9.32MB/s

end{sphinxVerbatim}

ap_band_iqumap_r9_7 24%[===> ] 23.21M 9.32MB/s

p_band_iqumap_r9_7y 26%[====&gt; ] 25.18M 9.33MB/s

</pre>

p_band_iqumap_r9_7y 26%[====> ] 25.18M 9.33MB/s

end{sphinxVerbatim}

p_band_iqumap_r9_7y 26%[====> ] 25.18M 9.33MB/s

_band_iqumap_r9_7yr 28%[====&gt; ] 27.17M 9.35MB/s

</pre>

_band_iqumap_r9_7yr 28%[====> ] 27.17M 9.35MB/s

end{sphinxVerbatim}

_band_iqumap_r9_7yr 28%[====> ] 27.17M 9.35MB/s

band_iqumap_r9_7yr_ 30%[=====&gt; ] 29.17M 9.36MB/s eta 7s

</pre>

band_iqumap_r9_7yr_ 30%[=====> ] 29.17M 9.36MB/s eta 7s

end{sphinxVerbatim}

band_iqumap_r9_7yr_ 30%[=====> ] 29.17M 9.36MB/s eta 7s

and_iqumap_r9_7yr_W 32%[=====&gt; ] 31.16M 9.49MB/s eta 7s

</pre>

and_iqumap_r9_7yr_W 32%[=====> ] 31.16M 9.49MB/s eta 7s

end{sphinxVerbatim}

and_iqumap_r9_7yr_W 32%[=====> ] 31.16M 9.49MB/s eta 7s

nd_iqumap_r9_7yr_W_ 34%[=====&gt; ] 33.14M 9.49MB/s eta 7s

</pre>

nd_iqumap_r9_7yr_W_ 34%[=====> ] 33.14M 9.49MB/s eta 7s

end{sphinxVerbatim}

nd_iqumap_r9_7yr_W_ 34%[=====> ] 33.14M 9.49MB/s eta 7s

d_iqumap_r9_7yr_W_v 36%[======&gt; ] 35.13M 9.50MB/s eta 7s

</pre>

d_iqumap_r9_7yr_W_v 36%[======> ] 35.13M 9.50MB/s eta 7s

end{sphinxVerbatim}

d_iqumap_r9_7yr_W_v 36%[======> ] 35.13M 9.50MB/s eta 7s

_iqumap_r9_7yr_W_v4 38%[======&gt; ] 37.10M 9.51MB/s eta 7s

</pre>

_iqumap_r9_7yr_W_v4 38%[======> ] 37.10M 9.51MB/s eta 7s

end{sphinxVerbatim}

_iqumap_r9_7yr_W_v4 38%[======> ] 37.10M 9.51MB/s eta 7s

iqumap_r9_7yr_W_v4. 40%[=======&gt; ] 38.99M 9.52MB/s eta 6s

</pre>

iqumap_r9_7yr_W_v4. 40%[=======> ] 38.99M 9.52MB/s eta 6s

end{sphinxVerbatim}

iqumap_r9_7yr_W_v4. 40%[=======> ] 38.99M 9.52MB/s eta 6s

qumap_r9_7yr_W_v4.f 42%[=======&gt; ] 40.92M 9.53MB/s eta 6s

</pre>

qumap_r9_7yr_W_v4.f 42%[=======> ] 40.92M 9.53MB/s eta 6s

end{sphinxVerbatim}

qumap_r9_7yr_W_v4.f 42%[=======> ] 40.92M 9.53MB/s eta 6s

umap_r9_7yr_W_v4.fi 44%[=======&gt; ] 42.77M 9.50MB/s eta 6s

</pre>

umap_r9_7yr_W_v4.fi 44%[=======> ] 42.77M 9.50MB/s eta 6s

end{sphinxVerbatim}

umap_r9_7yr_W_v4.fi 44%[=======> ] 42.77M 9.50MB/s eta 6s

map_r9_7yr_W_v4.fit 46%[========&gt; ] 44.76M 9.50MB/s eta 6s

</pre>

map_r9_7yr_W_v4.fit 46%[========> ] 44.76M 9.50MB/s eta 6s

end{sphinxVerbatim}

map_r9_7yr_W_v4.fit 46%[========> ] 44.76M 9.50MB/s eta 6s

ap_r9_7yr_W_v4.fits 48%[========&gt; ] 46.54M 9.46MB/s eta 6s

</pre>

ap_r9_7yr_W_v4.fits 48%[========> ] 46.54M 9.46MB/s eta 6s

end{sphinxVerbatim}

ap_r9_7yr_W_v4.fits 48%[========> ] 46.54M 9.46MB/s eta 6s

p_r9_7yr_W_v4.fits 50%[=========&gt; ] 48.42M 9.43MB/s eta 5s

</pre>

p_r9_7yr_W_v4.fits 50%[=========> ] 48.42M 9.43MB/s eta 5s

end{sphinxVerbatim}

p_r9_7yr_W_v4.fits 50%[=========> ] 48.42M 9.43MB/s eta 5s

_r9_7yr_W_v4.fits 52%[=========&gt; ] 50.39M 9.43MB/s eta 5s

</pre>

_r9_7yr_W_v4.fits 52%[=========> ] 50.39M 9.43MB/s eta 5s

end{sphinxVerbatim}

_r9_7yr_W_v4.fits 52%[=========> ] 50.39M 9.43MB/s eta 5s

r9_7yr_W_v4.fits 54%[=========&gt; ] 52.38M 9.43MB/s eta 5s

</pre>

r9_7yr_W_v4.fits 54%[=========> ] 52.38M 9.43MB/s eta 5s

end{sphinxVerbatim}

r9_7yr_W_v4.fits 54%[=========> ] 52.38M 9.43MB/s eta 5s

9_7yr_W_v4.fits 56%[==========&gt; ] 54.37M 9.44MB/s eta 5s

</pre>

9_7yr_W_v4.fits 56%[==========> ] 54.37M 9.44MB/s eta 5s

end{sphinxVerbatim}

9_7yr_W_v4.fits 56%[==========> ] 54.37M 9.44MB/s eta 5s

_7yr_W_v4.fits 58%[==========&gt; ] 56.35M 9.44MB/s eta 5s

</pre>

_7yr_W_v4.fits 58%[==========> ] 56.35M 9.44MB/s eta 5s

end{sphinxVerbatim}

_7yr_W_v4.fits 58%[==========> ] 56.35M 9.44MB/s eta 5s

7yr_W_v4.fits 60%[===========&gt; ] 58.22M 9.40MB/s eta 4s

</pre>

7yr_W_v4.fits 60%[===========> ] 58.22M 9.40MB/s eta 4s

end{sphinxVerbatim}

7yr_W_v4.fits 60%[===========> ] 58.22M 9.40MB/s eta 4s

yr_W_v4.fits 62%[===========&gt; ] 60.21M 9.40MB/s eta 4s

</pre>

yr_W_v4.fits 62%[===========> ] 60.21M 9.40MB/s eta 4s

end{sphinxVerbatim}

yr_W_v4.fits 62%[===========> ] 60.21M 9.40MB/s eta 4s

r_W_v4.fits 64%[===========&gt; ] 62.20M 9.41MB/s eta 4s

</pre>

r_W_v4.fits 64%[===========> ] 62.20M 9.41MB/s eta 4s

end{sphinxVerbatim}

r_W_v4.fits 64%[===========> ] 62.20M 9.41MB/s eta 4s

_W_v4.fits 66%[============&gt; ] 64.19M 9.41MB/s eta 4s

</pre>

_W_v4.fits 66%[============> ] 64.19M 9.41MB/s eta 4s

end{sphinxVerbatim}

_W_v4.fits 66%[============> ] 64.19M 9.41MB/s eta 4s

W_v4.fits 68%[============&gt; ] 66.18M 9.40MB/s eta 4s

</pre>

W_v4.fits 68%[============> ] 66.18M 9.40MB/s eta 4s

end{sphinxVerbatim}

W_v4.fits 68%[============> ] 66.18M 9.40MB/s eta 4s

_v4.fits 70%[=============&gt; ] 68.17M 9.41MB/s eta 3s

</pre>

_v4.fits 70%[=============> ] 68.17M 9.41MB/s eta 3s

end{sphinxVerbatim}

_v4.fits 70%[=============> ] 68.17M 9.41MB/s eta 3s

v4.fits 73%[=============&gt; ] 70.15M 9.41MB/s eta 3s

</pre>

v4.fits 73%[=============> ] 70.15M 9.41MB/s eta 3s

end{sphinxVerbatim}

v4.fits 73%[=============> ] 70.15M 9.41MB/s eta 3s

4.fits 75%[==============&gt; ] 72.13M 9.44MB/s eta 3s

</pre>

4.fits 75%[==============> ] 72.13M 9.44MB/s eta 3s

end{sphinxVerbatim}

4.fits 75%[==============> ] 72.13M 9.44MB/s eta 3s

.fits 77%[==============&gt; ] 74.11M 9.44MB/s eta 3s

</pre>

.fits 77%[==============> ] 74.11M 9.44MB/s eta 3s

end{sphinxVerbatim}

.fits 77%[==============> ] 74.11M 9.44MB/s eta 3s

fits 79%[==============&gt; ] 76.09M 9.51MB/s eta 3s

</pre>

fits 79%[==============> ] 76.09M 9.51MB/s eta 3s

end{sphinxVerbatim}

fits 79%[==============> ] 76.09M 9.51MB/s eta 3s

its 81%[===============&gt; ] 78.09M 9.51MB/s eta 2s

</pre>

its 81%[===============> ] 78.09M 9.51MB/s eta 2s

end{sphinxVerbatim}

its 81%[===============> ] 78.09M 9.51MB/s eta 2s

ts 83%[===============&gt; ] 80.08M 9.51MB/s eta 2s

</pre>

ts 83%[===============> ] 80.08M 9.51MB/s eta 2s

end{sphinxVerbatim}

ts 83%[===============> ] 80.08M 9.51MB/s eta 2s

s 85%[================&gt; ] 82.07M 9.52MB/s eta 2s

</pre>

s 85%[================> ] 82.07M 9.52MB/s eta 2s

end{sphinxVerbatim}

s 85%[================> ] 82.07M 9.52MB/s eta 2s


             87%[================>   ]  84.06M  9.51MB/s    eta 2s

          w  89%[================>   ]  85.92M  9.50MB/s    eta 2s

         wm  91%[=================>  ]  87.91M  9.50MB/s    eta 1s

        wma  93%[=================>  ]  89.90M  9.54MB/s    eta 1s

       wmap  95%[==================> ]  91.90M  9.54MB/s    eta 1s

      wmap_  97%[==================> ]  93.89M  9.54MB/s    eta 1s

     wmap_b  99%[==================> ]  95.87M  9.53MB/s    eta 1s

wmap_band_iqumap_r9 100%[===================&gt;] 96.01M 9.53MB/s in 10s

2024-02-17 01:23:34 (9.44 MB/s) - ‘wmap_band_iqumap_r9_7yr_W_v4.fits’ saved [100676160/100676160]

URL transformed to HTTPS due to an HSTS policy –2024-02-17 01:23:34– https://lambda.gsfc.nasa.gov/data/map/dr4/ancillary/masks/wmap_temperature_analysis_mask_r9_7yr_v4.fits Resolving lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)… 129.164.179.68, 2001:4d0:2310:150::68 Connecting to lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)|129.164.179.68|:443… </pre>

wmap_band_iqumap_r9 100%[===================>] 96.01M 9.53MB/s in 10s

2024-02-17 01:23:34 (9.44 MB/s) - ‘wmap_band_iqumap_r9_7yr_W_v4.fits’ saved [100676160/100676160]

URL transformed to HTTPS due to an HSTS policy –2024-02-17 01:23:34– https://lambda.gsfc.nasa.gov/data/map/dr4/ancillary/masks/wmap_temperature_analysis_mask_r9_7yr_v4.fits Resolving lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov){ldots} 129.164.179.68, 2001:4d0:2310:150::68 Connecting to lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)|129.164.179.68|:443{ldots} end{sphinxVerbatim}

wmap_band_iqumap_r9 100%[===================>] 96.01M 9.53MB/s in 10s

2024-02-17 01:23:34 (9.44 MB/s) - ‘wmap_band_iqumap_r9_7yr_W_v4.fits’ saved [100676160/100676160]

URL transformed to HTTPS due to an HSTS policy –2024-02-17 01:23:34– https://lambda.gsfc.nasa.gov/data/map/dr4/ancillary/masks/wmap_temperature_analysis_mask_r9_7yr_v4.fits Resolving lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)… 129.164.179.68, 2001:4d0:2310:150::68 Connecting to lambda.gsfc.nasa.gov (lambda.gsfc.nasa.gov)|129.164.179.68|:443…

connected.
HTTP request sent, awaiting response...
200 OK
Length: 25174080 (24M)
Saving to: ‘wmap_temperature_analysis_mask_r9_7yr_v4.fits’


  wmap_temp   0%[                    ]       0  --.-KB/s

 wmap_tempe   6%[>                   ]   1.58M  7.64MB/s

wmap_temper  14%[=>                  ]   3.57M  8.63MB/s

wmap_tempera  22%[===>                ]   5.46M  8.90MB/s
 

wmap_temperat  30%[=====>              ]   7.42M  9.05MB/s
  

wmap_temperatu  39%[======>             ]   9.41M  9.17MB/s
   
wmap_temperatur 47%[========&gt; ] 11.41M 9.24MB/s

</pre>

wmap_temperatur 47%[========> ] 11.41M 9.24MB/s

end{sphinxVerbatim}

wmap_temperatur 47%[========> ] 11.41M 9.24MB/s

more-to-come:

wmap_temperature 55%[==========&gt; ] 13.40M 9.29MB/s

</pre>

wmap_temperature 55%[==========> ] 13.40M 9.29MB/s

end{sphinxVerbatim}

wmap_temperature 55%[==========> ] 13.40M 9.29MB/s

more-to-come:

wmap_temperature_ 64%[===========&gt; ] 15.38M 9.32MB/s

</pre>

wmap_temperature_ 64%[===========> ] 15.38M 9.32MB/s

end{sphinxVerbatim}

wmap_temperature_ 64%[===========> ] 15.38M 9.32MB/s

more-to-come:

wmap_temperature_a 72%[=============&gt; ] 17.36M 9.35MB/s

</pre>

wmap_temperature_a 72%[=============> ] 17.36M 9.35MB/s

end{sphinxVerbatim}

wmap_temperature_a 72%[=============> ] 17.36M 9.35MB/s

wmap_temperature_an 80%[===============&gt; ] 19.35M 9.38MB/s

</pre>

wmap_temperature_an 80%[===============> ] 19.35M 9.38MB/s

end{sphinxVerbatim}

wmap_temperature_an 80%[===============> ] 19.35M 9.38MB/s

map_temperature_ana 88%[================&gt; ] 21.33M 9.40MB/s

</pre>

map_temperature_ana 88%[================> ] 21.33M 9.40MB/s

end{sphinxVerbatim}

map_temperature_ana 88%[================> ] 21.33M 9.40MB/s

ap_temperature_anal 97%[==================&gt; ] 23.32M 9.41MB/s

</pre>

ap_temperature_anal 97%[==================> ] 23.32M 9.41MB/s

end{sphinxVerbatim}

ap_temperature_anal 97%[==================> ] 23.32M 9.41MB/s

wmap_temperature_an 100%[===================&gt;] 24.01M 9.43MB/s in 2.5s

2024-02-17 01:23:36 (9.43 MB/s) - ‘wmap_temperature_analysis_mask_r9_7yr_v4.fits’ saved [25174080/25174080]

</pre>

wmap_temperature_an 100%[===================>] 24.01M 9.43MB/s in 2.5s

2024-02-17 01:23:36 (9.43 MB/s) - ‘wmap_temperature_analysis_mask_r9_7yr_v4.fits’ saved [25174080/25174080]

end{sphinxVerbatim}

wmap_temperature_an 100%[===================>] 24.01M 9.43MB/s in 2.5s

2024-02-17 01:23:36 (9.43 MB/s) - ‘wmap_temperature_analysis_mask_r9_7yr_v4.fits’ saved [25174080/25174080]

[14]:
wmap_map_I = hp.read_map("wmap_band_iqumap_r9_7yr_W_v4.fits")

By default, input maps are converted to RING ordering, if they are in NESTED ordering. You can otherwise specify nest=True to retrieve a map is NESTED ordering, or nest=None to keep the ordering unchanged.

By default, read_map loads the first column, for reading other columns you can specify the field keyword.

write_map writes a map to disk in FITS format, if the input map is a list of 3 maps, they are written to a single file as I,Q,U polarization components:

[15]:
hp.write_map("my_map.fits", wmap_map_I, overwrite=True)
setting the output map dtype to [dtype('>f4')]

Visualization

As shown above, mollweide projection with mollview is the most common visualization tool for HEALPIX maps. It also supports coordinate transformation, coord does Galactic to ecliptic coordinate transformation, norm='hist' sets a histogram equalized color scale and xsize increases the size of the image. graticule adds meridians and parallels.

[16]:
hp.mollview(
    wmap_map_I,
    coord=["G", "E"],
    title="Histogram equalized Ecliptic",
    unit="mK",
    norm="hist",
    min=-1,
    max=1,
)
hp.graticule()
_images/tutorial_28_0.png

gnomview instead provides gnomonic projection around a position specified by rot, for example you can plot a projection of the galactic center, xsize and ysize change the dimension of the sky patch.

[17]:
hp.gnomview(wmap_map_I, rot=[0, 0.3], title="GnomView", unit="mK", format="%.2g")
_images/tutorial_30_0.png

mollzoom is a powerful tool for interactive inspection of a map, it provides a mollweide projection where you can click to set the center of the adjacent gnomview panel. ## Masked map, partial maps

By convention, HEALPIX uses \(-1.6375 * 10^{30}\) to mark invalid or unseen pixels. This is stored in healpy as the constant UNSEEN.

All healpy functions automatically deal with maps with UNSEEN pixels, for example mollview marks in grey those sections of a map.

There is an alternative way of dealing with UNSEEN pixel based on the numpyMaskedArray class, hp.ma loads a map as a masked array, by convention the mask is 0 where the data are masked, while numpy defines data masked when the mask is True, so it is necessary to flip the mask.

[18]:
mask = hp.read_map("wmap_temperature_analysis_mask_r9_7yr_v4.fits").astype(np.bool_)
wmap_map_I_masked = hp.ma(wmap_map_I)
wmap_map_I_masked.mask = np.logical_not(mask)

Filling a masked array fills in the UNSEEN value and return a standard array that can be used by mollview. compressed() instead removes all the masked pixels and returns a standard array that can be used for examples by the matplotlib hist() function:

[19]:
hp.mollview(wmap_map_I_masked.filled())
_images/tutorial_34_0.png
[20]:
plt.hist(wmap_map_I_masked.compressed(), bins=1000);
_images/tutorial_35_0.png

Spherical Harmonics transforms

healpy provides bindings to the C++ HEALPIX library for performing spherical harmonic transforms. hp.anafast computes the angular power spectrum of a map:

[21]:
LMAX = 1024
cl = hp.anafast(wmap_map_I_masked.filled(), lmax=LMAX)
ell = np.arange(len(cl))

therefore we can plot a normalized CMB spectrum and write it to disk:

[22]:
plt.figure(figsize=(10, 5))
plt.plot(ell, ell * (ell + 1) * cl)
plt.xlabel("$\ell$")
plt.ylabel("$\ell(\ell+1)C_{\ell}$")
plt.grid()
hp.write_cl("cl.fits", cl, overwrite=True)
_images/tutorial_39_0.png

Gaussian beam map smoothing is provided by hp.smoothing:

[23]:
wmap_map_I_smoothed = hp.smoothing(wmap_map_I, fwhm=np.radians(1.))
hp.mollview(wmap_map_I_smoothed, min=-1, max=1, title="Map smoothed 1 deg")
_images/tutorial_41_0.png

For more information see the HEALPix primer