healpy.pixelfunc.get_interp_val¶
- healpy.pixelfunc.get_interp_val(m, theta, phi, nest=False, lonlat=False)¶
Return the bi-linear interpolation value of map(s) using 4 nearest neighbours.
- Parameters:
- marray-like, shape (npix,) or (nmaps, npix)
a healpix map or sequence thereof, accepts masked arrays
- theta, phifloat, scalar or array-like
angular coordinates of point at which to interpolate the map
- nestbool
if True, the is assumed to be in NESTED ordering.
- lonlatbool
If True, input angles are assumed to be longitude and latitude in degree, otherwise, they are co-latitude and longitude in radians.
- Returns:
- valfloat, scalar or array-like
the interpolated value(s), usual numpy broadcasting rules apply.
See also
Examples
>>> import healpy as hp >>> hp.get_interp_val(np.arange(12.), np.pi/2, 0) 4.0 >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2) 5.0 >>> hp.get_interp_val(np.arange(12.), np.pi/2, np.pi/2 + 2*np.pi) 5.0 >>> hp.get_interp_val(np.arange(12.), np.linspace(0, np.pi, 10), 0) array([ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ]) >>> hp.get_interp_val(np.arange(12.), 0, np.linspace(90, -90, 10), lonlat=True) array([ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ]) >>> hp.get_interp_val( ... [np.arange(12.), 2 * np.arange(12.)], np.linspace(0, np.pi, 10), 0 ... ) array([[ 1.5 , 1.5 , 1.5 , 2.20618428, 3.40206143, 5.31546486, 7.94639458, 9.5 , 9.5 , 9.5 ], [ 3. , 3. , 3. , 4.41236857, 6.80412286, 10.63092972, 15.89278916, 19. , 19. , 19. ]])